Advances and Optimizations of Gyrokinetic Turbulence Code GKV towards Exa-scale Computing

M. Nunami1,2, M. Nakata1,2, T.-H. watanabe3, S. Maeyama3, K. Nishioka3, A. Ishizawa4, and Y. Idomura5

1National Institute for Fusion Science, Japan
2The Graduate University for Advanced Studies, Japan
3Nagoya University, Japan,
4Kyoto University, Japan
5Japan Atomic Energy Agency, Japan
Acknowledgements

We greatly appreciate collaborators,

• R. Kanno, S. Matsuoka, K. Tanaka, Y. Suzuki, K. Nagaoka, H. Takahashi (NIFS)
• N. Kasuya (Kyushu U.)
• Y. Kasai (Fujitsu Ltd.)
• M. Honda, E. Narita, M. Yoshida, Y. Asahi (QST)
• J. Velasco, A. Alonso (CIEMAT)
• P. Xanthopoulos, G. Plunk (IPP, Greifswald)
• J. Proll (TUe)
• D. Mikkelsen (PPPL)

This work is supported by the MEXT, Grant for Post-K priority issue No. 6: Accelerated Development of Innovative Clean Energy Systems.

The simulations have been done by using Plasma Simulator (NIFS), Helios & JFRS-1 (IFERC-CSC), and K-computer (Riken R-CCS).
Outline

- Introduction & Gyrokinetic Vlasov code: GKV
- Recent studies from GKV simulations
 - Multi-scale turbulence simulations
 - Isotope effects and multi-species particle transport
- Optimizations in GKV
 - Overlap techniques between compt. & comm., and Segmented MPI-procs. mapping
 - More optimization toward Exa-scale computing
- For further speed up of GKV
 - Implicit solvers for collision operator
 - Moment extract approach
- Summary
Outline

- **Introduction & Gyrokinetic Vlasov code: GKV**
 - Recent studies from GKV simulations
 - Multi-scale turbulence simulations
 - Isotope effects and multi-species particle transport
 - Optimizations in GKV
 - Overlap techniques between compt. & comm., and Segmented MPI-procs. mapping
 - More optimization toward Exa-scale computing
 - For further speed up of GKV
 - Implicit solvers for collision operator
 - Moment extract approach
- Summary
Introduction

- Transport of magnetic confined plasmas
 - Collisions and orbits of particle motions etc. makes neoclassical transport.
 - Turbulence driven by microinstabilities causes anomalous transport.
 - Particle and heat transport observed in experiments are much larger than predictions by collisional transport theory (NC transport).
 - As a first-principle framework,
 Gyrokinetic model is powerful tool
 for qualitative and quantitative analyses
 for the transport phenomena.

Gyrokinetic eq. (ES case)
Introduction

Gyrokinetic simulations for multi-scales, multi-species, and stellarators

- Multi-scales from ion to electron scale sims:
 - Need quite higher resolution in perp. space.
- Multi-species turbulent transport:
 - Higher comp. costs & complicated collision term.
- 3D complicated field structure:
 - Higher resolution for config. than tokamaks (~ 100 X [Tokamak cases]).
- This is the computational challenge.
- Developments of HPC & optimizations of the code makes us to perform above gyrokinetic simulations.
- We can perform gyrokinetic simulations to evaluate the anomalous contributions to the plasma transport.
GKV code: GyroKinetic Vlasov code

- Local flux-tube 5D gyrokinetic simulation code
 - \(\delta f_s \) model for multi-species with fixed-background \(F_{s0} \) \(f_s = F_{s0} + \delta f_s \)
 - GKV solves GK eq. & Poisson/Ampere eqs. for \(\delta f \) in local flux-tube domain,
 - Eulerian (Continuum CFD) solver.
 - Spectral (FFT) in 2D (kx,ky)-space perp. to B-field
 - Finite-difference in 3D (z, v||, \(\mu \))-space
 - Parallelization with multi-dim. domain decomposition in (ky, z, v||, \(\mu \), s).
 - Hybrid parallelization with MPI/OpenMP.
 - GKV is a free software (under GNU General Public License).
HPC applications of GKV

Physical capability of GKV is extended along with HPC.

Multi-species & multi-scale turbulence simulations from ion to electron scales

Ion-scale turbulence simulations in complex LHD plasma

Ion-scale turbulence simulations in simple Tokamak plasma

Outline

- Introduction & Gyrokinetic Vlasov code: GKV
- Recent studies from GKV simulations
 - Multi-scale turbulence simulations
 - Isotope effects and multi-species particle transport
- Optimizations in GKV
 - Overlap techniques between compt. & comm., and Segmented MPI-procs. mapping
 - More optimization toward Exa-scale computing
- For further speed up of GKV
 - Implicit solvers for collision operator
 - Moment extract approach
- Summary
Multi-scale plasma turbulence simulations

- Wide-range instabilities from ion to electron scale.
- Electromagnetic (finite-\(\beta\)) effects stabilize ion modes.
- Multi-scale interactions between ion-scale turbulence and electron-scale turbulence are observed.
- Contrary to the conventional scale separation assumption, multi-scale interactions change the heat transport.
- Physical mechanism of multi-scale interactions is revealed via nonlinear triad interaction analysis.

Isotope effects on turbulent transport

- Ion mass and collisionality dependence of the mixing length diffusivity,

\[\chi_{\text{turb}} \sim \frac{\gamma}{k^2} = \frac{\widetilde{\gamma}_s}{k^2_s} \sqrt{A_s} \chi^{\text{GB}}(H) \]

- For ITG: almost no isotope-dep. in \(\widetilde{\gamma}_s \) \(\Rightarrow \tau_{ii}^{-1}/\omega_{ti} \propto A_i/A_c \)
- For TEM: reduction in \(\widetilde{\gamma}_s \) due to the isotope-dep. in \(\tau_{ei}^{-1}/\omega_{ti} \propto (A_i/A_c)^{1/2} \)

- Linear GK analysis predicts the improved confinement for TEM cases in a certain \(\nu_{ei}^* \)-regime (\(\nu_{ei}^* > 0.04 \)), beyond the Gyro-Bohm scaling.

- In TEM turb. sims. in LHD H- and D-plasmas, in addition to linear stabilization, transport reduction resulting from enhanced ZFs is identified in D-plasma.
Particle transport in multi-species plasmas

- LHD high-T_i (> 5keV) discharge heated by NBI
- Hollow impurity density “impurity hole” (Yoshinuma, NF2009)
 \[\Rightarrow \text{Advantage to avoid impurity accumulation} \]

There exists multiple particle species (e, H, He, C).
- Particle balances with neoclassical & turbulent fluxes;
 \[\frac{\partial n_s(\rho)}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial \rho} V' \left(\Gamma^{(\text{neo})}_s + \Gamma^{(\text{trb})}_s \right) = S^{(\text{aux})}_s \]
- Particle transport has various types of dependences on grad-T & grad-n.
Outline

- Introduction & Gyrokinetic Vlasov code: GKV
- Recent studies from GKV simulations
 - Multi-scale turbulence simulations
 - Isotope effects and multi-species particle transport
- Optimizations in GKV
 - Overlap techniques between compt. & comm., and Segmented MPI-procs. mapping
 - More optimization toward Exa-scale computing
- For further speed up of GKV
 - Implicit solvers for collision operator
 - Moment extract approach
- Summary
Optimizations in GKV

- Some communications exist in multi-dimensional CFD in GKV.
 - Spectral methods in \((x, y)\) ⇔ data transpose communication
 - Finite difference in \((z, v, \mu)\) ⇔ 1-to-1 communication
 - Integration over \((v, \mu, s)\) ⇔ reduction communication

- Communications should be masked and reduced.

Overlap techniques between compt. & comm.

- Communication thread enables overlaps for All-to-All.
- Overlap techniques are applied for
 - Spectral in \((x, y)\); Pipelined overlaps
 - FD in \((z, v, \mu)\);
 - Overlaps for MPI/OpenMP hybrid parallelization

Segmented MPI-procs. mapping of 5D problem on 3D torus network

- In K computer, 3D torus network is available.
- To reduce the costs of communication time, MPI mapping of 5D problem is optimized.

1. Arrange rank_xy:
 Data transpose is performed in a segment.

2. Arrange rank_z, _v, _m:
 Point-to-point communications are performed between adjacent segments.

3. Arrange rank_s:
 Reduction is performed in a cross section.

Performances on K computer

- Mapping + Overlaps
- Mapping
- No optimization

Number of cores [x10^3] vs. Speed up
Strong scaling toward million cores

- The optimized GKV code enables to perform GK simulations with high efficiencies and performances.
- Excellent strong scaling has been realized up to ~600k cores
- Achieved parallelization rate ~99.99994%
- Computation performance ~780 TFLOPS (Flops/Peak: 8.3 - 10.8%)

Problem size on K:
\((n_{x}, n_{v}, n_{z}, n_{v}, n_{\mu}, n_{s}) = (1024, 1024, 96, 96, 32, 2)\)

Parallelization on K:
\((N_{xy}, N_{z}, N_{v}, N_{\mu}, N_{s}, N_{\text{threads}}) = (8-64, 12, 12, 4, 2, 8)\)
Issues in comm.-compt. overlap in many-core system

- In many-core system as Exa-scale computers, the dynamic scheduling overhead in thread parallelizations are crucial.
- Comm.-Comp. overlap performance will degrade.

Non-blocking comm. by assistant cores on SMaC architecture

- In Japanese FLAGSHIP2020 project, Post-K computer is being developed towards Exa-scale computing, and Scalable Many Core (SMaC) architecture with Assistant cores (ACs) will be applied.
- In Fujitsu FX100, ACs (2cores with 32comp. Cores/node) are useful not only for reducing OS Jitter, but also for performance improvement.
 - Optimized Comm.-Comp. overlap w/o Master thread comm.
 - Fully non-blocking ISend/IRecv, IAllreduce, IAlltoAll.
 - Static or chunk-size-optimized Dynamic scheduling (More efficient calc. to mask overheads)
Numerical performance is compared among 3 types of the overlap:
- **MS(D)**: Master thread comm. with Dynamic sched. (chunk size=1, As-Is)
- **AC(D)**: Assistant core comm. with Dynamic sched. (chunk size=1)
- **AC(S)**: Assistant core comm. with Static sched.

On FX100:
- 4x12x18 nodes
- ~10 billion grid points
- 432 MPI proc. with 16 SMP

Comm. on MS is successfully masked by AC:
\[\frac{16}{15} = 6.25\%\text{ improve.}\] of comp. dynamic sched.

Static scheduling leads to not only reduction in OMP overhead, but also improved load/store and cache performance (incl. prefetch) with the continuous memory access for larger chunk size:
>15\% improve.
Outline

- Introduction & Gyrokinetic Vlasov code: GKV
- Recent studies from GKV simulations
 - Multi-scale turbulence simulations
 - Isotope effects and multi-species particle transport
- Optimizations in GKV
 - Overlap techniques between compt. & comm., and Segmented MPI_procs. mapping
 - More optimization toward Exa-scale computing
- For further speed up of GKV
 - Implicit solvers for collision operator
 - Moment extract approach
- Summary
For further speed up

- Our next target is **Post-K** computer around 2020 (Designed for Exa-Flops, Many-core processors, 100k - 1M nodes)
- Computation / communication cost ratio becomes severe.
- We should explore physically / computationally efficient time integration;
 - Implicit solver for collision operator
 - Moment extract approach

Implicit collision operator

- Velocity-dependent collision frequency ($\nu \propto 1/v^3$) restricts CFL.
- Since collision is an integro-differential operator over (v_\parallel, μ, s),
 - Data transpose by MPI_alltoall
 $$f \left(n_x, n_y, n_z, n_v, n_\mu, n_s \right) = f \left(n_v, n_\mu, n_s, \frac{n_z}{P_z}, \frac{n_x}{P_x}, \frac{n_y}{P_y} \right)$$
 - Iterative implicit solver for $f(v_\parallel, \mu, s)$, independent to (x, y, z)
 - Transpose back again by MPI_alltoall
- Arithmetic intensity and computational performance are enhanced. \Rightarrow Promising for manycore processor.
In Vlasov simulations, some restrictions exist due to the condition, $C \downarrow w = \omega \Delta t < 1$.

As a novel semi-implicit solver for time integrations in GKV, operator splitting scheme is applied in the momentum extract (ME) approach.

Operator splitting (Strang splitting)

\[
\frac{\partial h}{\partial t} = f(h) + g(h)
\Rightarrow h(t + \Delta t) = e^{\Delta t(f+g)} h(t)
= e^{\Delta t g/2} e^{\Delta t f} e^{\Delta t g/2} h(t) + \mathcal{O}(\Delta t^3)
\]

In a test for toroidal ITG mode with
\[
C_v = v_{\text{lim}} \Delta t / \Delta z = 0.47, C_w = v_{\text{pmax}} \Delta t / \Delta z = 0.40,
\]
precise calculation are successfully performed compared with conventional semi-implicit method (A-SIRK).

For lower wavenumbers, the width of time step Δt can be extended to $1.7 \times$ RKG limit.
Outline

- Introduction & Gyrokinetic Vlasov code: GKV
- Recent studies from GKV simulations
 - Multi-scale turbulence simulations
 - Isotope effects and multi-species particle transport
- Optimizations in GKV
 - Overlap techniques between compt. & comm., and Segmented MPI-procs. mapping
 - More optimization toward Exa-scale computing
- For further speed up of GKV
 - Implicit solvers for collision operator
 - Moment extract approach

Summary
Summary

Gyrokinetic simulations and GKV code

- Gyrokinetic simulation is most powerful tool for qualitative/quantitative analyses for turbulent plasma transport phenomena.
- Owing to recent HPC and developments, analyses for multi-scale turbulence, isotope effects and multi-species particle transport become possible by means of gyrokinetic code, GKV.

Optimizations and advances in GKV

- **Optimization**
 - For efficient computations, communications should be masked and reduced.
 - Overlap techniques for compt. & comm., and optimized mapping of 5D problem strong cause excellent strong scaling toward million cores.
 - In Comm.-Comp. overlap by AC, all the OpenMP threads concentrate their computations, and the usage of Static scheduling leads to ~22.5% improvement of performance.

- **For further speed up**
 - Implicit solver for collision operator leads to arithmetic intensity and enhancements of computational performance.
 - Semi-implicit solver for time integrations, operator splitting scheme is applied in momentum extract.
Thank you very much!